Internal
problem
ID
[3498]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
15,
Higher
order
ordinary
differential
equations.
15.4
Exercises,
page
523
Problem
number
:
Problem
15.33
Date
solved
:
Sunday, March 30, 2025 at 01:45:03 AM
CAS
classification
:
[[_3rd_order, _exact, _nonlinear]]
ode:=2*y(x)*diff(diff(diff(y(x),x),x),x)+2*(y(x)+3*diff(y(x),x))*diff(diff(y(x),x),x)+2*diff(y(x),x)^2 = sin(x); dsolve(ode,y(x), singsol=all);
ode=2*y[x]*D[y[x],{x,3}]+2*(y[x]+3*D[y[x],x])*D[y[x],{x,2}]+2*(D[y[x],x])^2==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*y(x) + 6*Derivative(y(x), x))*Derivative(y(x), (x, 2)) + 2*y(x)*Derivative(y(x), (x, 3)) - sin(x) + 2*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -sqrt(-4*y(x)*Derivative(y(x), (x, 2)) - 4*y(x)*Derivative(y(x), (x, 3)) + 2*sin(x) + 9*Derivative(y(x), (x, 2))**2)/2 + Derivative(y(x), x) + 3*Derivative(y(x), (x, 2))/2 cannot be solved by the factorable group method