Internal
problem
ID
[3493]
Book
:
Mathematical
methods
for
physics
and
engineering,
Riley,
Hobson,
Bence,
second
edition,
2002
Section
:
Chapter
15,
Higher
order
ordinary
differential
equations.
15.4
Exercises,
page
523
Problem
number
:
Problem
15.21
Date
solved
:
Sunday, March 30, 2025 at 01:44:53 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = x; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) - x + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)