15.25.1 problem 1

Internal problem ID [3388]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 43, page 209
Problem number : 1
Date solved : Sunday, March 30, 2025 at 01:38:48 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+3 y^{\prime }-y&=x \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 74
Order:=6; 
ode:=x*diff(diff(y(x),x),x)+3*diff(y(x),x)-y(x) = x; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \left (1+\frac {1}{3} x +\frac {1}{24} x^{2}+\frac {1}{360} x^{3}+\frac {1}{8640} x^{4}+\frac {1}{302400} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (\ln \left (x \right ) \left (x^{2}+\frac {1}{3} x^{3}+\frac {1}{24} x^{4}+\frac {1}{360} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2+2 x -\frac {4}{9} x^{3}-\frac {25}{288} x^{4}-\frac {157}{21600} x^{5}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{2}}+x^{2} \left (\frac {1}{8}+\frac {1}{120} x +\frac {1}{2880} x^{2}+\frac {1}{100800} x^{3}+\operatorname {O}\left (x^{4}\right )\right ) \]
Mathematica. Time used: 0.086 (sec). Leaf size: 248
ode=x*D[y[x],{x,2}]+3*D[y[x],x]-y[x]==x; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_2 \left (x^4 \left (\frac {25}{576}-\frac {\log (x)}{48}\right )+x^3 \left (\frac {2}{9}-\frac {\log (x)}{6}\right )-\frac {1}{2} x^2 \log (x)-x+1\right )}{x^2}+c_1 \left (\frac {x^5}{302400}+\frac {x^4}{8640}+\frac {x^3}{360}+\frac {x^2}{24}+\frac {x}{3}+1\right )+\left (\frac {x^5}{302400}+\frac {x^4}{8640}+\frac {x^3}{360}+\frac {x^2}{24}+\frac {x}{3}+1\right ) \left (\frac {x^6 (9-4 \log (x))}{2304}+\frac {1}{900} x^5 (23-15 \log (x))+\frac {1}{64} x^4 (1-4 \log (x))-\frac {x^3}{6}+\frac {x^2}{4}\right )+\frac {\left (-\frac {x^6}{288}-\frac {x^5}{30}-\frac {x^4}{8}\right ) \left (x^4 \left (\frac {25}{576}-\frac {\log (x)}{48}\right )+x^3 \left (\frac {2}{9}-\frac {\log (x)}{6}\right )-\frac {1}{2} x^2 \log (x)-x+1\right )}{x^2} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - x - y(x) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : ODE x*Derivative(y(x), (x, 2)) - x - y(x) + 3*Derivative(y(x), x) does not match hint 2nd_power_series_regular