Internal
problem
ID
[3347]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
40,
page
186
Problem
number
:
13
Date
solved
:
Sunday, March 30, 2025 at 01:37:34 AM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
Using series method with expansion around
With initial conditions
Order:=7; ode:=diff(diff(y(x),x),x) = sin(y(x)); ic:=y(0) = 1/4*Pi, D(y)(0) = 0; dsolve([ode,ic],y(x),type='series',x=0);
ode=D[y[x],{x,2}]==Sin[y[x]]; ic={y[0]==Pi/4,Derivative[1][y][0] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,6}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sin(y(x)) + Derivative(y(x), (x, 2)),0) ics = {y(0): pi/4, Subs(Derivative(y(x), x), x, 0): 0} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=7)
ValueError : ODE -sin(y(x)) + Derivative(y(x), (x, 2)) does not match hint 2nd_power_series_regular