15.20.10 problem 10

Internal problem ID [3318]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 38, page 173
Problem number : 10
Date solved : Sunday, March 30, 2025 at 01:35:28 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y&=y^{\prime } x \left (y^{\prime }+1\right ) \end{align*}

Maple. Time used: 0.028 (sec). Leaf size: 65
ode:=y(x) = diff(y(x),x)*x*(diff(y(x),x)+1); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {x \left (1+2 \operatorname {LambertW}\left (-\frac {1}{2 \sqrt {\frac {c_1}{x}}}\right )\right )}{4 \operatorname {LambertW}\left (-\frac {1}{2 \sqrt {\frac {c_1}{x}}}\right )^{2}} \\ y &= \frac {x \left (1+2 \operatorname {LambertW}\left (\frac {1}{2 \sqrt {\frac {c_1}{x}}}\right )\right )}{4 \operatorname {LambertW}\left (\frac {1}{2 \sqrt {\frac {c_1}{x}}}\right )^{2}} \\ \end{align*}
Mathematica. Time used: 0.523 (sec). Leaf size: 102
ode=y[x]==D[y[x],x]*x*(D[y[x],x]+1); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}-1}-\log \left (\sqrt {\frac {4 y(x)}{x}+1}-1\right )&=\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [\frac {1}{\sqrt {\frac {4 y(x)}{x}+1}+1}+\log \left (\sqrt {\frac {4 y(x)}{x}+1}+1\right )&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 23.512 (sec). Leaf size: 85
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(Derivative(y(x), x) + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} - \log {\left (\frac {\sqrt {1 + \frac {4 y{\left (x \right )}}{x}}}{2} + \frac {1}{2} + \frac {y{\left (x \right )}}{x} \right )} - \frac {2}{\sqrt {1 + \frac {4 y{\left (x \right )}}{x}} + 1}, \ \log {\left (x \right )} = C_{1} - \log {\left (- \frac {\sqrt {1 + \frac {4 y{\left (x \right )}}{x}}}{2} + \frac {1}{2} + \frac {y{\left (x \right )}}{x} \right )} + \frac {2}{\sqrt {1 + \frac {4 y{\left (x \right )}}{x}} - 1}\right ] \]