15.19.22 problem 22

Internal problem ID [3306]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 37, page 171
Problem number : 22
Date solved : Sunday, March 30, 2025 at 01:34:19 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left ({y^{\prime }}^{2}+1\right ) x&=y^{\prime } \left (x +y\right ) \end{align*}

Maple. Time used: 0.035 (sec). Leaf size: 36
ode:=(1+diff(y(x),x)^2)*x = (x+y(x))*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= x \\ y &= \frac {x \left (\operatorname {LambertW}\left (\frac {x}{c_1}\right )^{2}-\operatorname {LambertW}\left (\frac {x}{c_1}\right )+1\right )}{\operatorname {LambertW}\left (\frac {x}{c_1}\right )} \\ \end{align*}
Mathematica. Time used: 5.364 (sec). Leaf size: 247
ode=(D[y[x],x]^2+1)*x==D[y[x],x]*(x+y[x]); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [2 \left (\text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}+3}-2}{\sqrt {\frac {y(x)}{x}-1}}\right )+\frac {\sqrt {\frac {y(x)}{x}-1} \left (\sqrt {\frac {y(x)}{x}+3}-2\right )}{\frac {2 y(x)}{x}-2 \sqrt {\frac {y(x)}{x}-1} \left (\sqrt {\frac {y(x)}{x}+3}-2\right )-4 \sqrt {\frac {y(x)}{x}+3}+6}\right )&=\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \text {Solve}\left [2 \text {arctanh}\left (\frac {\sqrt {\frac {y(x)}{x}+3}-2}{\sqrt {\frac {y(x)}{x}-1}}\right )+\frac {\sqrt {\frac {y(x)}{x}-1} \left (\sqrt {\frac {y(x)}{x}+3}-2\right )}{\frac {y(x)}{x}+\sqrt {\frac {y(x)}{x}-1} \left (\sqrt {\frac {y(x)}{x}+3}-2\right )-2 \sqrt {\frac {y(x)}{x}+3}+3}&=-\frac {\log (x)}{2}+c_1,y(x)\right ] \\ \end{align*}
Sympy. Time used: 56.834 (sec). Leaf size: 185
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(Derivative(y(x), x)**2 + 1) - (x + y(x))*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (u_{1} - \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1\right )}\, du_{1} + \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1}}{u_{1} \left (u_{1} - \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1\right )}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} - \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1}\, du_{1}}, \ y{\left (x \right )} = C_{1} e^{- \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} \left (u_{1} + \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1\right )}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {\sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1}}{u_{1} \left (u_{1} + \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1\right )}\, du_{1} - \int \limits ^{\frac {x}{y{\left (x \right )}}} \frac {1}{u_{1} + \sqrt {- 3 u_{1}^{2} + 2 u_{1} + 1} - 1}\, du_{1}}\right ] \]