15.19.16 problem 16

Internal problem ID [3300]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 37, page 171
Problem number : 16
Date solved : Sunday, March 30, 2025 at 01:33:12 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} \left ({y^{\prime }}^{2}-1\right ) x&=2 y^{\prime } y \end{align*}

Maple. Time used: 0.078 (sec). Leaf size: 30
ode:=x*(diff(y(x),x)^2-1) = 2*y(x)*diff(y(x),x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -i x \\ y &= i x \\ y &= \frac {-c_1^{2}+x^{2}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.083 (sec). Leaf size: 45
ode=(D[y[x],x]^2-1)*x==2*D[y[x],x]*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x \sinh (-\log (x)+c_1) \\ y(x)\to x \sinh (\log (x)+c_1) \\ y(x)\to -i x \\ y(x)\to i x \\ \end{align*}
Sympy. Time used: 8.927 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(Derivative(y(x), x)**2 - 1) - 2*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = x \sinh {\left (C_{1} - \log {\left (x \right )} \right )}, \ y{\left (x \right )} = - x \sinh {\left (C_{1} - \log {\left (x \right )} \right )}\right ] \]