15.18.39 problem 39

Internal problem ID [3282]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 35, page 157
Problem number : 39
Date solved : Sunday, March 30, 2025 at 01:31:14 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} x^{\prime \prime }-k^{2} x&=0 \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=0\\ x^{\prime }\left (0\right )&=v_{0} \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 13
ode:=diff(diff(x(t),t),t)-k^2*x(t) = 0; 
ic:=x(0) = 0, D(x)(0) = v__0; 
dsolve([ode,ic],x(t), singsol=all);
 
\[ x = \frac {v_{0} \sinh \left (k t \right )}{k} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 27
ode=D[x[t],{t,2}]-k^2*x[t]==0; 
ic={x[0]==0,Derivative[1][x][0 ]==v0}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ x(t)\to \frac {\text {v0} e^{-k t} \left (e^{2 k t}-1\right )}{2 k} \]
Sympy. Time used: 0.099 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
k = symbols("k") 
x = Function("x") 
ode = Eq(-k**2*x(t) + Derivative(x(t), (t, 2)),0) 
ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): v__0} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = \frac {v^{0} e^{k t}}{2 k} - \frac {v^{0} e^{- k t}}{2 k} \]