Internal
problem
ID
[3277]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
35,
page
157
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 01:26:16 AM
CAS
classification
:
[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]
With initial conditions
ode:=(x^2+1)*diff(diff(y(x),x),x)+1+diff(y(x),x)^2 = 0; ic:=y(0) = 1, D(y)(0) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=(1+x^2)*D[y[x],{x,2}]+1+D[y[x],x]^2==0; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 + 1)*Derivative(y(x), (x, 2)) + Derivative(y(x), x)**2 + 1,0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)