15.10.10 problem 10

Internal problem ID [3097]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 18, page 82
Problem number : 10
Date solved : Sunday, March 30, 2025 at 01:18:25 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime \prime }-8 y^{\prime \prime }+5 y^{\prime }-y&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=4*diff(diff(diff(y(x),x),x),x)-8*diff(diff(y(x),x),x)+5*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {x}{2}} \left (c_3 x +c_2 \right )+c_1 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 30
ode=4*D[y[x],{x,3}]-8*D[y[x],{x,2}]+5*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{x/2} \left (c_2 x+c_3 e^{x/2}+c_1\right ) \]
Sympy. Time used: 0.162 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + 5*Derivative(y(x), x) - 8*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} + C_{2} x\right ) e^{\frac {x}{2}} \]