15.9.11 problem 25

Internal problem ID [3068]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 17, page 78
Problem number : 25
Date solved : Sunday, March 30, 2025 at 01:17:55 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 21
ode:=2*diff(diff(diff(y(x),x),x),x)-diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-x}+c_2 \,{\mathrm e}^{\frac {x}{2}}+c_3 \,{\mathrm e}^{x} \]
Mathematica. Time used: 0.004 (sec). Leaf size: 30
ode=2*D[y[x],{x,3}]-D[y[x],{x,2}]-2*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{x/2}+c_2 e^{-x}+c_3 e^x \]
Sympy. Time used: 0.160 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) - Derivative(y(x), (x, 2)) + 2*Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} + C_{2} e^{\frac {x}{2}} + C_{3} e^{x} \]