Internal
problem
ID
[3053]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
12,
page
46
Problem
number
:
53
Date
solved
:
Sunday, March 30, 2025 at 01:14:32 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=x-2*y(x)+3 = (x-2*y(x)+1)*diff(y(x),x); ic:=y(0) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=(x-2*y[x]+3)==(x-2*y[x]+1)*D[y[x],x]; ic={y[0]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x - (x - 2*y(x) + 1)*Derivative(y(x), x) - 2*y(x) + 3,0) ics = {y(0): 2} dsolve(ode,func=y(x),ics=ics)