Internal
problem
ID
[3048]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
12,
page
46
Problem
number
:
48
Date
solved
:
Sunday, March 30, 2025 at 01:14:00 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Bernoulli]
With initial conditions
ode:=diff(x(theta),theta) = x(theta)+x(theta)^2*exp(theta); ic:=x(0) = 2; dsolve([ode,ic],x(theta), singsol=all);
ode=D[ x[\[Theta]], \[Theta] ]==x[\[Theta]]+x[\[Theta]]^2*Exp[\[Theta]]; ic={x[0]==2}; DSolve[{ode,ic},x[\[Theta]],\[Theta],IncludeSingularSolutions->True]
from sympy import * theta = symbols("theta") x = Function("x") ode = Eq(-x(theta)**2*exp(theta) - x(theta) + Derivative(x(theta), theta),0) ics = {x(0): 2} dsolve(ode,func=x(theta),ics=ics)