Internal
problem
ID
[3043]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
12,
page
46
Problem
number
:
42
Date
solved
:
Sunday, March 30, 2025 at 01:13:30 AM
CAS
classification
:
[_exact]
With initial conditions
ode:=(2*y(x)^3-2*x^2*y(x)^3-x+x*y(x)^2*ln(y(x)))/x/y(x)^2+(2*y(x)^3*ln(x)-x^2*y(x)^3+2*x+x*y(x)^2)/y(x)^3*diff(y(x),x) = 0; ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=((2*y[x]^3-2*x^2*y[x]^3-x+x*y[x]^2*Log[y[x]])/(x*y[x]^2))+( (2*y[x]^3*Log[x]-x^2*y[x]^3+2*x+x*y[x]^2)/y[x]^3)*D[y[x],x]==0; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x**2*y(x)**3 + x*y(x)**2 + 2*x + 2*y(x)**3*log(x))*Derivative(y(x), x)/y(x)**3 + (-2*x**2*y(x)**3 + x*y(x)**2*log(y(x)) - x + 2*y(x)**3)/(x*y(x)**2),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)
Timed Out