15.8.26 problem 27

Internal problem ID [3029]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 12, page 46
Problem number : 27
Date solved : Sunday, March 30, 2025 at 01:11:15 AM
CAS classification : [_exact]

\begin{align*} x -2 x y+{\mathrm e}^{y}+\left (y-x^{2}+x \,{\mathrm e}^{y}\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.009 (sec). Leaf size: 28
ode:=x-2*x*y(x)+exp(y(x))+(y(x)-x^2+x*exp(y(x)))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ -x^{2} y+x \,{\mathrm e}^{y}+\frac {x^{2}}{2}+\frac {y^{2}}{2}+c_1 = 0 \]
Mathematica. Time used: 0.364 (sec). Leaf size: 35
ode=(x-2*x*y[x]+Exp[y[x]] )+(y[x]-x^2+x*Exp[y[x]] )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [x^2 (-y(x))+\frac {x^2}{2}+x e^{y(x)}+\frac {y(x)^2}{2}=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x) + x + (-x**2 + x*exp(y(x)) + y(x))*Derivative(y(x), x) + exp(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out