15.7.17 problem 17
Internal
problem
ID
[2998]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
11,
page
45
Problem
number
:
17
Date
solved
:
Sunday, March 30, 2025 at 01:05:01 AM
CAS
classification
:
[_Bernoulli]
\begin{align*} y^{\prime }+y \cos \left (x \right )&=y^{3} \sin \left (x \right ) \end{align*}
✓ Maple. Time used: 0.007 (sec). Leaf size: 86
ode:=diff(y(x),x)+y(x)*cos(x) = y(x)^3*sin(x);
dsolve(ode,y(x), singsol=all);
\begin{align*}
y &= -\frac {\sqrt {\left (c_1 -2 \int {\mathrm e}^{-2 \sin \left (x \right )} \sin \left (x \right )d x \right ) {\mathrm e}^{-2 \sin \left (x \right )}}}{c_1 -2 \int {\mathrm e}^{-2 \sin \left (x \right )} \sin \left (x \right )d x} \\
y &= \frac {\sqrt {\left (c_1 -2 \int {\mathrm e}^{-2 \sin \left (x \right )} \sin \left (x \right )d x \right ) {\mathrm e}^{-2 \sin \left (x \right )}}}{c_1 -2 \int {\mathrm e}^{-2 \sin \left (x \right )} \sin \left (x \right )d x} \\
\end{align*}
✓ Mathematica. Time used: 10.405 (sec). Leaf size: 84
ode=D[y[x],x]+y[x]*Cos[x]==y[x]^3*Sin[x];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to -\frac {1}{\sqrt {e^{2 \sin (x)} \left (-2 \int _1^xe^{-2 \sin (K[1])} \sin (K[1])dK[1]+c_1\right )}} \\
y(x)\to \frac {1}{\sqrt {e^{2 \sin (x)} \left (-2 \int _1^xe^{-2 \sin (K[1])} \sin (K[1])dK[1]+c_1\right )}} \\
y(x)\to 0 \\
\end{align*}
✓ Sympy. Time used: 88.422 (sec). Leaf size: 60
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-y(x)**3*sin(x) + y(x)*cos(x) + Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = - \sqrt {\frac {e^{- 2 \sin {\left (x \right )}}}{C_{1} - 2 \int e^{- 2 \sin {\left (x \right )}} \sin {\left (x \right )}\, dx}}, \ y{\left (x \right )} = \sqrt {\frac {e^{- 2 \sin {\left (x \right )}}}{C_{1} - 2 \int e^{- 2 \sin {\left (x \right )}} \sin {\left (x \right )}\, dx}}\right ]
\]