15.5.14 problem 14

Internal problem ID [2950]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 9, page 38
Problem number : 14
Date solved : Sunday, March 30, 2025 at 01:01:01 AM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} \left (2 x +3 x^{2} y\right ) y^{\prime }+y+2 y^{2} x&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 376
ode:=(2*x+3*x^2*y(x))*diff(y(x),x)+y(x)+2*x*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2 c_1^{2} 2^{{1}/{3}}-2 c_1 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}+2^{{2}/{3}} \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{2}/{3}}}{6 c_1 x \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}}} \\ y &= \frac {2 c_1^{2} \left (i \sqrt {3}-1\right ) 2^{{1}/{3}}-\left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} \left (\left (1+i \sqrt {3}\right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} 2^{{2}/{3}}+4 c_1 \right )}{12 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} c_1 x} \\ y &= \frac {-2 c_1^{2} \left (1+i \sqrt {3}\right ) 2^{{1}/{3}}+\left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} \left (\left (i \sqrt {3}-1\right ) \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} 2^{{2}/{3}}-4 c_1 \right )}{12 \left (\left (3 \sqrt {\frac {-12 c_1 +81 x}{x}}\, x -2 c_1 +27 x \right ) c_1^{2}\right )^{{1}/{3}} c_1 x} \\ \end{align*}
Mathematica. Time used: 31.11 (sec). Leaf size: 380
ode=(2*x+3*x^2*y[x])*D[y[x],x]+(y[x]+2*y[x]^2*x)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{6} \left (\frac {2}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}+\frac {2^{2/3} \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {2}{x}\right ) \\ y(x)\to \frac {1}{12} \left (-\frac {2 \left (1+i \sqrt {3}\right )}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}+\frac {i 2^{2/3} \left (\sqrt {3}+i\right ) \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {4}{x}\right ) \\ y(x)\to \frac {1}{12} \left (\frac {2 i \left (\sqrt {3}+i\right )}{\sqrt [3]{\frac {3}{2} \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+\frac {27 c_1 x^4}{2}-x^3}}-\frac {2^{2/3} \left (1+i \sqrt {3}\right ) \sqrt [3]{3 \sqrt {3} \sqrt {c_1 x^7 (-4+27 c_1 x)}+27 c_1 x^4-2 x^3}}{x^2}-\frac {4}{x}\right ) \\ \end{align*}
Sympy. Time used: 42.798 (sec). Leaf size: 430
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**2 + (3*x**2*y(x) + 2*x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {- 2^{\frac {2}{3}} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}} - 2^{\frac {2}{3}} \sqrt {3} i \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}} - \frac {2}{x} + \frac {2 \sqrt {3} i}{x} + \frac {4 \sqrt [3]{2}}{x^{2} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}}}}{6 \left (1 - \sqrt {3} i\right )}, \ y{\left (x \right )} = \frac {- 2^{\frac {2}{3}} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}} + 2^{\frac {2}{3}} \sqrt {3} i \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}} - \frac {2}{x} - \frac {2 \sqrt {3} i}{x} + \frac {4 \sqrt [3]{2}}{x^{2} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}}}}{6 \left (1 + \sqrt {3} i\right )}, \ y{\left (x \right )} = - \frac {2^{\frac {2}{3}} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}}}{6} - \frac {1}{3 x} - \frac {\sqrt [3]{2}}{3 x^{2} \sqrt [3]{- \frac {27 C_{1}}{x^{2}} + 3 \sqrt {3} \sqrt {\frac {C_{1} \left (27 C_{1} - \frac {4}{x}\right )}{x^{4}}} + \frac {2}{x^{3}}}}\right ] \]