Internal
problem
ID
[2907]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
7,
page
28
Problem
number
:
14
Date
solved
:
Sunday, March 30, 2025 at 12:53:02 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=x+y(x)+4 = (2*x+2*y(x)-1)*diff(y(x),x); ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(x+y[x]+4)==(2*x+2*y[x]-1)*D[y[x],x]; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x - (2*x + 2*y(x) - 1)*Derivative(y(x), x) + y(x) + 4,0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)