14.32.4 problem 4

Internal problem ID [2828]
Book : Differential equations and their applications, 4th ed., M. Braun
Section : Chapter 4. Qualitative theory of differential equations. Section 4.7 (Phase portraits of linear systems). Page 427
Problem number : 4
Date solved : Sunday, March 30, 2025 at 12:33:23 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-4 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-6 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.107 (sec). Leaf size: 30
ode:=[diff(x__1(t),t) = -4*x__1(t)-x__2(t), diff(x__2(t),t) = x__1(t)-6*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-5 t} \left (c_2 t +c_1 \right ) \\ x_{2} \left (t \right ) &= {\mathrm e}^{-5 t} \left (c_2 t +c_1 -c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 44
ode={D[x1[t],t]==-4*x1[t]-x2[t],D[x2[t],t]==1*x1[t]-6*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{-5 t} (c_1 (t+1)-c_2 t) \\ \text {x2}(t)\to e^{-5 t} ((c_1-c_2) t+c_2) \\ \end{align*}
Sympy. Time used: 0.128 (sec). Leaf size: 36
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(4*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 6*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = C_{2} t e^{- 5 t} + \left (C_{1} + C_{2}\right ) e^{- 5 t}, \ x^{2}{\left (t \right )} = C_{1} e^{- 5 t} + C_{2} t e^{- 5 t}\right ] \]