Internal
problem
ID
[2755]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.10,
Systems
of
differential
equations.
Equal
roots.
Page
352
Problem
number
:
6
Date
solved
:
Sunday, March 30, 2025 at 12:16:31 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -4*x__1(t)-4*x__2(t), diff(x__2(t),t) = 10*x__1(t)+9*x__2(t)+x__3(t), diff(x__3(t),t) = -4*x__1(t)-3*x__2(t)+x__3(t)]; ic:=x__1(0) = 2x__2(0) = 1x__3(0) = -1; dsolve([ode,ic]);
ode={D[ x1[t],t]==-4*x1[t]-4*x2[t]+0*x3[t],D[ x2[t],t]==10*x1[t]+9*x2[t]+1*x3[t],D[ x3[t],t]==-4*x1[t]-3*x2[t]+1*x3[t]}; ic={x1[0]==2,x2[0]==1,x3[0]==-1}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(4*x__1(t) + 4*x__2(t) + Derivative(x__1(t), t),0),Eq(-10*x__1(t) - 9*x__2(t) - x__3(t) + Derivative(x__2(t), t),0),Eq(4*x__1(t) + 3*x__2(t) - x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)