Internal
problem
ID
[2738]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.8,
Systems
of
differential
equations.
The
eigenva1ue-eigenvector
method.
Page
339
Problem
number
:
11
Date
solved
:
Sunday, March 30, 2025 at 12:16:05 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = x__1(t)-3*x__2(t)+2*x__3(t), diff(x__2(t),t) = -x__2(t), diff(x__3(t),t) = -x__2(t)-2*x__3(t)]; ic:=x__1(0) = -2x__2(0) = 0x__3(0) = 3; dsolve([ode,ic]);
ode={D[ x1[t],t]==1*x1[t]-3*x2[t]+2*x3[t],D[ x2[t],t]==0*x1[t]-1*x2[t]+0*x3[t],D[ x3[t],t]==0*x1[t]-1*x2[t]-2*x3[t]}; ic={x1[0]==-2,x2[0]==0,x3[0]==3}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-x__1(t) + 3*x__2(t) - 2*x__3(t) + Derivative(x__1(t), t),0),Eq(x__2(t) + Derivative(x__2(t), t),0),Eq(x__2(t) + 2*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)