Internal
problem
ID
[2735]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.8,
Systems
of
differential
equations.
The
eigenva1ue-eigenvector
method.
Page
339
Problem
number
:
8
Date
solved
:
Sunday, March 30, 2025 at 12:16:00 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = x__1(t)-3*x__2(t), diff(x__2(t),t) = -2*x__1(t)+2*x__2(t)]; ic:=x__1(0) = 0x__2(0) = 5; dsolve([ode,ic]);
ode={D[ x1[t],t]==1*x1[t]-3*x2[t],D[ x2[t],t]==-2*x1[t]+2*x2[t]}; ic={x1[0]==0,x2[0]==5}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-x__1(t) + 3*x__2(t) + Derivative(x__1(t), t),0),Eq(2*x__1(t) - 2*x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)