Internal
problem
ID
[2731]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Section
3.8,
Systems
of
differential
equations.
The
eigenva1ue-eigenvector
method.
Page
339
Problem
number
:
4
Date
solved
:
Sunday, March 30, 2025 at 12:15:55 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 7*x__1(t)-x__2(t)+6*x__3(t), diff(x__2(t),t) = -10*x__1(t)+4*x__2(t)-12*x__3(t), diff(x__3(t),t) = -2*x__1(t)+x__2(t)-x__3(t)]; dsolve(ode);
ode={D[ x1[t],t]==7*x1[t]-1*x2[t]+6*x3[t],D[ x2[t],t]==-10*x1[t]+4*x2[t]-12*x3[t],D[ x3[t],t]==-2*x1[t]+1*x2[t]-1*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-7*x__1(t) + x__2(t) - 6*x__3(t) + Derivative(x__1(t), t),0),Eq(10*x__1(t) - 4*x__2(t) + 12*x__3(t) + Derivative(x__2(t), t),0),Eq(2*x__1(t) - x__2(t) + x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)