Internal
problem
ID
[2699]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.14,
The
method
of
elimination
for
systems.
Excercises
page
258
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:15:08 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -2*x(t)+y(t)+t, diff(y(t),t) = -4*x(t)+3*y(t)-1]; dsolve(ode);
ode={D[x[t],t]==-2*x[t]-y[t]+t,D[y[t],t]==-4*x[t]+3*y[t]-1}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-t + 2*x(t) - y(t) + Derivative(x(t), t),0),Eq(4*x(t) - 3*y(t) + Derivative(y(t), t) + 1,0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)