Internal
problem
ID
[2697]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.12,
Dirac
delta
function.
Excercises
page
250
Problem
number
:
7
Date
solved
:
Sunday, March 30, 2025 at 12:15:05 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+y(t) = exp(-t)+3*Dirac(t-3); ic:=y(0) = 0, D(y)(0) = 3; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+2*D[y[t],t]+y[t]==Exp[-t]+3*DiracDelta[t-3]; ic={y[0]==0,Derivative[1][y][0] ==3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*Dirac(t - 3) + y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 3} dsolve(ode,func=y(t),ics=ics)