Internal
problem
ID
[2605]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.5.
Method
of
judicious
guessing.
Excercises
page
164
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 12:11:22 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+diff(y(t),t)+4*y(t) = t^2+(2*t+3)*(1+cos(t)); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+D[y[t],t]+4*y[t]==t^2+(2*t+3)*(1+Cos[t]); ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**2 - (2*t + 3)*(cos(t) + 1) + 4*y(t) + Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)