Internal
problem
ID
[2595]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.5.
Method
of
judicious
guessing.
Excercises
page
164
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:11:06 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+4*y(t) = t*exp(alpha*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+4*D[y[t],t]+4*y[t]==t*Exp[\[Alpha]*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") Alpha = symbols("Alpha") y = Function("y") ode = Eq(-t*exp(Alpha*t) + 4*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)