Internal
problem
ID
[2591]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.4.
The
method
of
variation
of
parameters.
Excercises
page
156
Problem
number
:
9
Date
solved
:
Sunday, March 30, 2025 at 12:10:59 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(y(t),t),t)-2*y(t) = t^2; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]-2*y[t]==t^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) - t**2 - 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)