Internal
problem
ID
[2585]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
2.
Second
order
differential
equations.
Section
2.4.
The
method
of
variation
of
parameters.
Excercises
page
156
Problem
number
:
3
Date
solved
:
Sunday, March 30, 2025 at 12:10:49 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=2*diff(diff(y(t),t),t)-3*diff(y(t),t)+y(t) = (t^2+1)*exp(t); dsolve(ode,y(t), singsol=all);
ode=2*D[y[t],{t,2}]-3*D[y[t],t]+y[t]==(t^2+1)*Exp[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-t**2 - 1)*exp(t) + y(t) - 3*Derivative(y(t), t) + 2*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)