Internal
problem
ID
[2533]
Book
:
Differential
equations
and
their
applications,
4th
ed.,
M.
Braun
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.10.
Existence-uniqueness
theorem.
Excercises
page
80
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 12:09:02 AM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=diff(y(t),t) = 1/4*(1+cos(4*t))*y(t)-1/800*(1-cos(4*t))*y(t)^2; ic:=y(0) = 100; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==1/4*(1+Cos[4*t])*y[t]-1/800*(1-Cos[4*t])*y[t]^2; ic={y[0]==100}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((1 - cos(4*t))*y(t)**2/800 - (cos(4*t) + 1)*y(t)/4 + Derivative(y(t), t),0) ics = {y(0): 100} dsolve(ode,func=y(t),ics=ics)