Internal
problem
ID
[2403]
Book
:
Differential
equations
and
their
applications,
3rd
ed.,
M.
Braun
Section
:
Section
2.4,
The
method
of
variation
of
parameters.
Page
154
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 12:00:28 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+4*y(t) = t*exp(2*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-4*D[y[t],t]+4*y[t]==t*Exp[2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*exp(2*t) + 4*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)