13.4.9 problem 11

Internal problem ID [2346]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.9. Page 66
Problem number : 11
Date solved : Saturday, March 29, 2025 at 11:57:59 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=1 \end{align*}

Maple. Time used: 0.134 (sec). Leaf size: 21
ode:=3*t*y(t)+y(t)^2+(t^2+t*y(t))*diff(y(t),t) = 0; 
ic:=y(2) = 1; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {-t^{2}+\sqrt {t^{4}+20}}{t} \]
Mathematica. Time used: 0.675 (sec). Leaf size: 22
ode=3*t*y[t]+y[t]^2+(t^2+t*y[t])*D[y[t],t] == 0; 
ic=y[2]==1; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {\sqrt {t^4+20}}{t}-t \]
Sympy. Time used: 1.265 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(3*t*y(t) + (t**2 + t*y(t))*Derivative(y(t), t) + y(t)**2,0) 
ics = {y(2): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - t + \frac {\sqrt {t^{4} + 20}}{t} \]