13.2.5 problem 5

Internal problem ID [2303]
Book : Differential equations and their applications, 3rd ed., M. Braun
Section : Section 1.2. Page 9
Problem number : 5
Date solved : Saturday, March 29, 2025 at 11:53:21 PM
CAS classification : [_linear]

\begin{align*} t^{2} y+y^{\prime }&=1 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 57
ode:=t^2*y(t)+diff(y(t),t) = 1; 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\frac {\left (3^{{1}/{3}} t \Gamma \left (\frac {1}{3}, -\frac {t^{3}}{3}\right ) \Gamma \left (\frac {2}{3}\right )-\frac {2 \,3^{{5}/{6}} t \pi }{3}-3 c_1 \Gamma \left (\frac {2}{3}\right ) \left (-t^{3}\right )^{{1}/{3}}\right ) {\mathrm e}^{-\frac {t^{3}}{3}}}{3 \left (-t^{3}\right )^{{1}/{3}} \Gamma \left (\frac {2}{3}\right )} \]
Mathematica. Time used: 0.072 (sec). Leaf size: 52
ode=t^2*y[t]+D[y[t],t] == 1; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{3} e^{-\frac {t^3}{3}} \left (\frac {\sqrt [3]{3} \left (-t^3\right )^{2/3} \Gamma \left (\frac {1}{3},-\frac {t^3}{3}\right )}{t^2}+3 c_1\right ) \]
Sympy. Time used: 0.824 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*y(t) + Derivative(y(t), t) - 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + \frac {\sqrt [3]{3} \gamma \left (\frac {1}{3}, \frac {t^{3} e^{i \pi }}{3}\right )}{3}\right ) e^{- \frac {t^{3}}{3} - \frac {i \pi }{3}} \]