12.16.30 problem 26

Internal problem ID [2092]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.6 THE METHOD OF FROBENIUS III. Exercises 7.7. Page 389
Problem number : 26
Date solved : Saturday, March 29, 2025 at 11:48:15 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x \left (2 x^{2}+1\right ) y^{\prime }-\left (-10 x^{2}+1\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 48
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x*(2*x^2+1)*diff(y(x),x)-(-10*x^2+1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \,x^{2} \left (1-\frac {3}{2} x^{2}+x^{4}+\operatorname {O}\left (x^{6}\right )\right )+c_2 \left (\ln \left (x \right ) \left (8 x^{2}-12 x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2+2 x^{2}+4 x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 52
ode=x^2*D[y[x],{x,2}]+x*(1+2*x^2)*D[y[x],x]-(1-10*x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (x^5-\frac {3 x^3}{2}+x\right )+c_1 \left (2 x \left (3 x^2-2\right ) \log (x)-\frac {5 x^4-x^2-1}{x}\right ) \]
Sympy. Time used: 0.882 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(2*x**2 + 1)*Derivative(y(x), x) - (1 - 10*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} x \left (x^{4} - \frac {3 x^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]