Internal
problem
ID
[1838]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
34
Date
solved
:
Saturday, March 29, 2025 at 11:41:07 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-2*y(x) = -2*x^2; ic:=y(1) = 1, D(y)(1) = -1; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+2*x*D[y[x],x]-2*y[x]==-2*x^2; ic={y[1]==1,Derivative[1][y][1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + 2*x**2 + 2*x*Derivative(y(x), x) - 2*y(x),0) ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): -1} dsolve(ode,func=y(x),ics=ics)