Internal
problem
ID
[1820]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
16
Date
solved
:
Saturday, March 29, 2025 at 11:40:29 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)-(2*a-1)*x*diff(y(x),x)+a^2*y(x) = x^(a+1); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-(2*a-1)*x*D[y[x],x]+a^2*y[x]==x^(a+1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(a**2*y(x) + x**2*Derivative(y(x), (x, 2)) - x*(2*a - 1)*Derivative(y(x), x) - x**(a + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)