12.6.13 problem 13

Internal problem ID [1692]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Exact equations. Section 2.5 Page 79
Problem number : 13
Date solved : Saturday, March 29, 2025 at 11:33:14 PM
CAS classification : [_separable]

\begin{align*} \frac {x}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}+\frac {y y^{\prime }}{\left (x^{2}+y^{2}\right )^{{3}/{2}}}&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 27
ode:=x/(x^2+y(x)^2)^(3/2)+y(x)/(x^2+y(x)^2)^(3/2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+c_1} \\ y &= -\sqrt {-x^{2}+c_1} \\ \end{align*}
Mathematica. Time used: 0.079 (sec). Leaf size: 39
ode=(x/(x^2+y[x]^2)^(3/2))+(y[x]/(x^2+y[x]^2)^(3/2))*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {-x^2+2 c_1} \\ y(x)\to \sqrt {-x^2+2 c_1} \\ \end{align*}
Sympy. Time used: 0.310 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x/(x**2 + y(x)**2)**(3/2) + y(x)*Derivative(y(x), x)/(x**2 + y(x)**2)**(3/2),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - x^{2}}\right ] \]