Internal
problem
ID
[1677]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
52
Date
solved
:
Saturday, March 29, 2025 at 11:26:43 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
With initial conditions
ode:=diff(y(x),x)+2*y(x)/x = (3*x^2*y(x)^2+6*x*y(x)+2)/x^2/(2*x*y(x)+3); ic:=y(2) = 2; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]+2/x*y[x]==(3*x^2*y[x]^2+6*x*y[x]+2)/(x^2*(2*x*y[x]+3)); ic=y[2]==2; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) + 2*y(x)/x - (3*x**2*y(x)**2 + 6*x*y(x) + 2)/(x**2*(2*x*y(x) + 3)),0) ics = {y(2): 2} dsolve(ode,func=y(x),ics=ics)