12.5.51 problem 50

Internal problem ID [1675]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. Transformation of Nonlinear Equations into Separable Equations. Section 2.4 Page 68
Problem number : 50
Date solved : Saturday, March 29, 2025 at 11:26:35 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} 2 x \left (y+2 \sqrt {x}\right ) y^{\prime }&=\left (y+\sqrt {x}\right )^{2} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 50
ode:=2*x*(y(x)+2*x^(1/2))*diff(y(x),x) = (y(x)+x^(1/2))^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-2 x +\sqrt {x^{2} \left (\ln \left (x \right )-c_1 +4\right )}}{\sqrt {x}} \\ y &= -\frac {2 x +\sqrt {x^{2} \left (\ln \left (x \right )-c_1 +4\right )}}{\sqrt {x}} \\ \end{align*}
Mathematica. Time used: 0.584 (sec). Leaf size: 68
ode=2*x*(y[x]+2*Sqrt[x])*D[y[x],x]==(y[x]+Sqrt[x])^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -2 \sqrt {x}-\sqrt {\frac {1}{x^2}} x \sqrt {x (\log (x)+4+c_1)} \\ y(x)\to -2 \sqrt {x}+\sqrt {\frac {1}{x^2}} x \sqrt {x (\log (x)+4+c_1)} \\ \end{align*}
Sympy. Time used: 26.396 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*(2*sqrt(x) + y(x))*Derivative(y(x), x) - (sqrt(x) + y(x))**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt {x} \left (- \sqrt {C_{1} + \log {\left (x \right )}} - 2\right ), \ y{\left (x \right )} = \sqrt {x} \left (\sqrt {C_{1} + \log {\left (x \right )}} - 2\right )\right ] \]