Internal
problem
ID
[1662]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
2,
First
order
equations.
Transformation
of
Nonlinear
Equations
into
Separable
Equations.
Section
2.4
Page
68
Problem
number
:
35(a)
Date
solved
:
Saturday, March 29, 2025 at 11:21:18 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Riccati]
With initial conditions
ode:=x^2*diff(y(x),x) = y(x)^2+x*y(x)-4*x^2; ic:=y(-1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],x]==y[x]^2+x*y[x]-4*x^2; ic=y[-1]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) + 4*x**2 - x*y(x) - y(x)**2,0) ics = {y(-1): 0} dsolve(ode,func=y(x),ics=ics)