12.3.23 problem 24

Internal problem ID [1600]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 2, First order equations. separable equations. Section 2.2 Page 52
Problem number : 24
Date solved : Saturday, March 29, 2025 at 11:06:28 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {1+y^{2}}{x^{2}+1} \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 9
ode:=diff(y(x),x) = (1+y(x)^2)/(x^2+1); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \tan \left (\arctan \left (x \right )+c_1 \right ) \]
Mathematica. Time used: 0.239 (sec). Leaf size: 25
ode=D[y[x],x]==(1+y[x]^2)/(1+x^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \tan (\arctan (x)+c_1) \\ y(x)\to -i \\ y(x)\to i \\ \end{align*}
Sympy. Time used: 0.238 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - (y(x)**2 + 1)/(x**2 + 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (C_{1} + \operatorname {atan}{\left (x \right )} \right )} \]