Internal
problem
ID
[1536]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
1,
Introduction.
Section
1.2
Page
14
Problem
number
:
10(a)
Date
solved
:
Saturday, March 29, 2025 at 10:58:02 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=diff(y(x),x) = -1/2*x-1+1/2*(x^2+4*x+4*y(x))^(1/2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] ==1/2*(-(x+2)+Sqrt[x^2+4*x+4*y[x]]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x/2 - sqrt(x**2 + 4*x + 4*y(x))/2 + Derivative(y(x), x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)