12.1.14 problem 5(c)

Internal problem ID [1532]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 1, Introduction. Section 1.2 Page 14
Problem number : 5(c)
Date solved : Saturday, March 29, 2025 at 10:57:51 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=x \left (1+y^{2}\right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.073 (sec). Leaf size: 10
ode:=diff(y(x),x) = x*(1+y(x)^2); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \tan \left (\frac {x^{2}}{2}\right ) \]
Mathematica. Time used: 0.179 (sec). Leaf size: 13
ode=D[y[x],x] ==x*(1+y[x]^2); 
ic=y[0]==0; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \tan \left (\frac {x^2}{2}\right ) \]
Sympy. Time used: 0.285 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*(y(x)**2 + 1) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (\frac {x^{2}}{2} \right )} \]