11.5.7 problem 7
Internal
problem
ID
[1512]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
11th
ed.,
Boyce,
DiPrima,
Meade
Section
:
Chapter
6.5,
The
Laplace
Transform.
Impulse
functions.
page
273
Problem
number
:
7
Date
solved
:
Saturday, March 29, 2025 at 10:57:08 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime }+2 y^{\prime }+2 y&=\cos \left (t \right )+\delta \left (t -\frac {\pi }{2}\right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 0.425 (sec). Leaf size: 46
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+2*y(t) = cos(t)+Dirac(t-1/2*Pi);
ic:=y(0) = 0, D(y)(0) = 0;
dsolve([ode,ic],y(t),method='laplace');
\[
y = \frac {\cos \left (t \right )}{5}+\frac {2 \sin \left (t \right )}{5}+\frac {\left (-\cos \left (t \right )-3 \sin \left (t \right )\right ) {\mathrm e}^{-t}}{5}-\cos \left (t \right ) \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) {\mathrm e}^{-t +\frac {\pi }{2}}
\]
✓ Mathematica. Time used: 0.16 (sec). Leaf size: 52
ode=D[y[t],{t,2}]+2*D[y[t],t]+2*y[t]==Cos[t]+DiracDelta[t-Pi/2];
ic={y[0]==0,Derivative[1][y][0] ==0};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\[
y(t)\to \frac {1}{5} e^{-t} \left (-5 e^{\pi /2} \theta (2 t-\pi ) \cos (t)+\left (2 e^t-3\right ) \sin (t)+\left (e^t-1\right ) \cos (t)\right )
\]
✓ Sympy. Time used: 9.519 (sec). Leaf size: 102
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(-Dirac(t - pi/2) + 2*y(t) - cos(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0)
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0}
dsolve(ode,func=y(t),ics=ics)
\[
y{\left (t \right )} = \left (\left (- \int \limits ^{0} e^{t} \cos ^{2}{\left (t \right )}\, dt + \int \left (\operatorname {Dirac}{\left (t - \frac {\pi }{2} \right )} + \cos {\left (t \right )}\right ) e^{t} \cos {\left (t \right )}\, dt - \int \limits ^{0} \operatorname {Dirac}{\left (t - \frac {\pi }{2} \right )} e^{t} \cos {\left (t \right )}\, dt\right ) \sin {\left (t \right )} + \left (- \int \left (\operatorname {Dirac}{\left (t - \frac {\pi }{2} \right )} + \cos {\left (t \right )}\right ) e^{t} \sin {\left (t \right )}\, dt + \int \limits ^{0} \operatorname {Dirac}{\left (t - \frac {\pi }{2} \right )} e^{t} \sin {\left (t \right )}\, dt + \int \limits ^{0} e^{t} \sin {\left (t \right )} \cos {\left (t \right )}\, dt\right ) \cos {\left (t \right )}\right ) e^{- t}
\]