11.3.2 problem 9

Internal problem ID [1484]
Book : Elementary differential equations and boundary value problems, 11th ed., Boyce, DiPrima, Meade
Section : Chapter 6.2, The Laplace Transform. Solution of Initial Value Problems. page 255
Problem number : 9
Date solved : Saturday, March 29, 2025 at 10:56:12 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+3 y^{\prime }+2 y&=0 \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 0.103 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)+2*y(t) = 0; 
ic:=y(0) = 1, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = 2 \,{\mathrm e}^{-t}-{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 18
ode=D[y[t],{t,2}]+3*D[y[t],t]+2*y[t]==0; 
ic={y[0]==1,Derivative[1][y][0] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{-2 t} \left (2 e^t-1\right ) \]
Sympy. Time used: 0.175 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*y(t) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (2 - e^{- t}\right ) e^{- t} \]