10.19.10 problem 10

Internal problem ID [1451]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number : 10
Date solved : Saturday, March 29, 2025 at 10:55:33 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )+2 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-5 x_{1} \left (t \right ) \end{align*}

Maple. Time used: 0.138 (sec). Leaf size: 83
ode:=[diff(x__1(t),t) = x__1(t)+2*x__2(t), diff(x__2(t),t) = -5*x__1(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \frac {{\mathrm e}^{\frac {t}{2}} \left (\sin \left (\frac {\sqrt {39}\, t}{2}\right ) \sqrt {39}\, c_2 -\cos \left (\frac {\sqrt {39}\, t}{2}\right ) \sqrt {39}\, c_1 -\sin \left (\frac {\sqrt {39}\, t}{2}\right ) c_1 -\cos \left (\frac {\sqrt {39}\, t}{2}\right ) c_2 \right )}{10} \\ x_{2} \left (t \right ) &= {\mathrm e}^{\frac {t}{2}} \left (\sin \left (\frac {\sqrt {39}\, t}{2}\right ) c_1 +\cos \left (\frac {\sqrt {39}\, t}{2}\right ) c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.005 (sec). Leaf size: 54
ode={D[ x1[t],t]==1*x1[t]+2*x2[t],D[ x2[t],t]==-5*x1[t]-1*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to c_1 \cos (3 t)+\frac {1}{3} (c_1+2 c_2) \sin (3 t) \\ \text {x2}(t)\to c_2 \cos (3 t)-\frac {1}{3} (5 c_1+c_2) \sin (3 t) \\ \end{align*}
Sympy. Time used: 0.185 (sec). Leaf size: 92
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t) - 2*x__2(t) + Derivative(x__1(t), t),0),Eq(5*x__1(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \left (\frac {C_{1}}{10} - \frac {\sqrt {39} C_{2}}{10}\right ) e^{\frac {t}{2}} \cos {\left (\frac {\sqrt {39} t}{2} \right )} + \left (\frac {\sqrt {39} C_{1}}{10} + \frac {C_{2}}{10}\right ) e^{\frac {t}{2}} \sin {\left (\frac {\sqrt {39} t}{2} \right )}, \ x^{2}{\left (t \right )} = C_{1} e^{\frac {t}{2}} \cos {\left (\frac {\sqrt {39} t}{2} \right )} - C_{2} e^{\frac {t}{2}} \sin {\left (\frac {\sqrt {39} t}{2} \right )}\right ] \]