10.19.5 problem 5

Internal problem ID [1446]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number : 5
Date solved : Saturday, March 29, 2025 at 10:55:26 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{1} \left (t \right )-5 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-3 x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.136 (sec). Leaf size: 47
ode:=[diff(x__1(t),t) = x__1(t)-5*x__2(t), diff(x__2(t),t) = x__1(t)-3*x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= {\mathrm e}^{-t} \left (\sin \left (t \right ) c_1 +\cos \left (t \right ) c_2 \right ) \\ x_{2} \left (t \right ) &= \frac {{\mathrm e}^{-t} \left (2 \sin \left (t \right ) c_1 +\sin \left (t \right ) c_2 -\cos \left (t \right ) c_1 +2 \cos \left (t \right ) c_2 \right )}{5} \\ \end{align*}
Mathematica. Time used: 0.005 (sec). Leaf size: 54
ode={D[ x1[t],t]==1*x1[t]-5*x2[t],D[ x2[t],t]==1*x1[t]-3*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{-t} (c_1 \cos (t)+(2 c_1-5 c_2) \sin (t)) \\ \text {x2}(t)\to e^{-t} (c_2 \cos (t)+(c_1-2 c_2) \sin (t)) \\ \end{align*}
Sympy. Time used: 0.095 (sec). Leaf size: 46
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-x__1(t) + 5*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 3*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \left (C_{1} - 2 C_{2}\right ) e^{- t} \cos {\left (t \right )} - \left (2 C_{1} + C_{2}\right ) e^{- t} \sin {\left (t \right )}, \ x^{2}{\left (t \right )} = - C_{1} e^{- t} \sin {\left (t \right )} + C_{2} e^{- t} \cos {\left (t \right )}\right ] \]