10.19.2 problem 2

Internal problem ID [1443]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 9.1, The Phase Plane: Linear Systems. page 505
Problem number : 2
Date solved : Saturday, March 29, 2025 at 10:55:22 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=5 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=3 x_{1} \left (t \right )+x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.126 (sec). Leaf size: 34
ode:=[diff(x__1(t),t) = 5*x__1(t)-x__2(t), diff(x__2(t),t) = 3*x__1(t)+x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{4 t} \\ x_{2} \left (t \right ) &= 3 c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{4 t} \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 73
ode={D[ x1[t],t]==5*x1[t]-1*x2[t],D[ x2[t],t]==3*x1[t]+1*x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{2} e^{2 t} \left (c_1 \left (3 e^{2 t}-1\right )-c_2 \left (e^{2 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{2} e^{2 t} \left (3 c_1 \left (e^{2 t}-1\right )-c_2 \left (e^{2 t}-3\right )\right ) \\ \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-5*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-3*x__1(t) - x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {C_{1} e^{2 t}}{3} + C_{2} e^{4 t}, \ x^{2}{\left (t \right )} = C_{1} e^{2 t} + C_{2} e^{4 t}\right ] \]