10.18.11 problem 11

Internal problem ID [1438]
Book : Elementary differential equations and boundary value problems, 10th ed., Boyce and DiPrima
Section : Chapter 7.9, Nonhomogeneous Linear Systems. page 447
Problem number : 11
Date solved : Saturday, March 29, 2025 at 10:55:13 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=2 x_{1} \left (t \right )-5 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )-2 x_{2} \left (t \right )+\cos \left (t \right ) \end{align*}

Maple. Time used: 0.214 (sec). Leaf size: 56
ode:=[diff(x__1(t),t) = 2*x__1(t)-5*x__2(t), diff(x__2(t),t) = x__1(t)-2*x__2(t)+cos(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \sin \left (t \right ) c_2 +\cos \left (t \right ) c_1 -\frac {5 \sin \left (t \right ) t}{2} \\ x_{2} \left (t \right ) &= -\frac {\cos \left (t \right ) c_2}{5}+\frac {\sin \left (t \right ) c_1}{5}+\frac {\cos \left (t \right ) t}{2}+\frac {\sin \left (t \right )}{2}+\frac {2 \sin \left (t \right ) c_2}{5}+\frac {2 \cos \left (t \right ) c_1}{5}-\sin \left (t \right ) t \\ \end{align*}
Mathematica. Time used: 0.024 (sec). Leaf size: 60
ode={D[ x1[t],t]==2*x1[t]-5*x2[t]+0,D[ x2[t],t]==1*x1[t]-2*x2[t]-Cos[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \left (\frac {5}{2}+c_1\right ) \cos (t)+\frac {1}{2} (5 t+4 c_1-10 c_2) \sin (t) \\ \text {x2}(t)\to \left (-\frac {t}{2}+1+c_2\right ) \cos (t)+(t+c_1-2 c_2) \sin (t) \\ \end{align*}
Sympy. Time used: 0.196 (sec). Leaf size: 110
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-2*x__1(t) + 5*x__2(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) + 2*x__2(t) - cos(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \frac {5 t \sin ^{3}{\left (t \right )}}{2} - \frac {5 t \sin {\left (t \right )} \cos ^{2}{\left (t \right )}}{2} - \left (C_{1} - 2 C_{2}\right ) \cos {\left (t \right )} - \left (2 C_{1} + C_{2}\right ) \sin {\left (t \right )}, \ x^{2}{\left (t \right )} = - C_{1} \sin {\left (t \right )} + C_{2} \cos {\left (t \right )} - t \sin ^{3}{\left (t \right )} + \frac {t \sin ^{2}{\left (t \right )} \cos {\left (t \right )}}{2} - t \sin {\left (t \right )} \cos ^{2}{\left (t \right )} + \frac {t \cos ^{3}{\left (t \right )}}{2} + \frac {\sin ^{3}{\left (t \right )}}{2} + \frac {\sin {\left (t \right )} \cos ^{2}{\left (t \right )}}{2}\right ] \]