Internal
problem
ID
[1410]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Chapter
7.6,
Complex
Eigenvalues.
page
417
Problem
number
:
10
Date
solved
:
Saturday, March 29, 2025 at 10:54:30 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -3*x__1(t)+2*x__2(t), diff(x__2(t),t) = -x__1(t)-x__2(t)]; ic:=x__1(0) = 1x__2(0) = -2; dsolve([ode,ic]);
ode={D[ x1[t],t]==-3*x1[t]+2*x2[t],D[ x2[t],t]==-1*x1[t]-1*x2[t]}; ic={x1[0]==1,x2[0]==1}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(3*x__1(t) - 2*x__2(t) + Derivative(x__1(t), t),0),Eq(x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)